If it's not what You are looking for type in the equation solver your own equation and let us solve it.
n^2+2n=40
We move all terms to the left:
n^2+2n-(40)=0
a = 1; b = 2; c = -40;
Δ = b2-4ac
Δ = 22-4·1·(-40)
Δ = 164
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{164}=\sqrt{4*41}=\sqrt{4}*\sqrt{41}=2\sqrt{41}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-2\sqrt{41}}{2*1}=\frac{-2-2\sqrt{41}}{2} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+2\sqrt{41}}{2*1}=\frac{-2+2\sqrt{41}}{2} $
| -2(2t+3)=-4-3(t+4) | | 4k+2k/2-4=8 | | 2x2+4=22 | | 3x*2x*x=384 | | -3x-17=-(17+3x | | 80t+4-16t=0 | | X^2-4+y^2+10=36 | | 1/4(7+3g)=-g8 | | 40+5(y)=20 | | (3x-11)/4=5 | | 13-x/5=16 | | 83/x=15/100 | | Y=2t^2-16t+20 | | 1/2(10x+4)=16x+14 | | 2/395n-1)=-3/59n+2) | | 3=n.4 | | 4=n.4 | | 1/2(10x+4)=1.8x+14+0.2x | | w-3/4=3/5 | | x-2/3=8(1/2) | | 6x-5.9=3x+5.6-1.6 | | 7x-152=2x-12 | | 5/9=x+4 | | u+5/8=-3/4 | | x/6-((x+2)/2)=(x-13)/9 | | -3=v-2/3 | | w+7/8=3/4 | | 93=h+90 | | A(w)=18w-w^2 | | 4=-2/5+y | | 42.3=p+26.3 | | 4y+1/5=5y/3+29/5 |